
Einführung in die Objektorientierte Programmierung (OOP)Einführung in die Objektorientierte Programmierung (OOP)

5. Sortieren und Suchen

5.8 Rekursionen

Einführung in die Objektorientierte Programmierung (OOP)Einführung in die Objektorientierte Programmierung (OOP)

5.8 Rekursion

public int fakultaet(int n)
{
 if (n == 0)
 return 1;
 else
 return n * fakultaet(n - 1);
}

Einführung in die Objektorientierte Programmierung (OOP)Einführung in die Objektorientierte Programmierung (OOP)

5.8 Rekursion

public int fakultaet(int n)
{
 if (n == 0)
 return 1;
 else
 return n * fakultaet(n - 1);
}

Die Methode ruft sich selbst auf = Rekursion

Einführung in die Objektorientierte Programmierung (OOP)Einführung in die Objektorientierte Programmierung (OOP)

5.8 Rekursion public int fakultaet(int n)
{
 if (n == 0)
 return 1;
 else
 return n * fakultaet(n - 1);
}

fakultaet(4)
n != 0 → fakultaet(3)

Einführung in die Objektorientierte Programmierung (OOP)Einführung in die Objektorientierte Programmierung (OOP)

5.8 Rekursion public int fakultaet(int n)
{
 if (n == 0)
 return 1;
 else
 return n * fakultaet(n - 1);
}fakultaet(3)

n != 0 → fakultaet(2)

fakultaet(4)
n != 0 → fakultaet(3)

Einführung in die Objektorientierte Programmierung (OOP)Einführung in die Objektorientierte Programmierung (OOP)

5.8 Rekursion public int fakultaet(int n)
{
 if (n == 0)
 return 1;
 else
 return n * fakultaet(n - 1);
}

fakultaet(2)
n != 0 → fakultaet(1)

fakultaet(3)
n != 0 → fakultaet(2)

fakultaet(4)
n != 0 → fakultaet(3)

rekursiver
Abstieg

Einführung in die Objektorientierte Programmierung (OOP)Einführung in die Objektorientierte Programmierung (OOP)

5.8 Rekursion public int fakultaet(int n)
{
 if (n == 0)
 return 1;
 else
 return n * fakultaet(n - 1);
}

fakultaet(1)
n != 0 → fakultaet(0)

fakultaet(2)
n != 0 → fakultaet(1)

fakultaet(3)
n != 0 → fakultaet(2)

fakultaet(4)
n != 0 → fakultaet(3)

rekursiver
Abstieg

Einführung in die Objektorientierte Programmierung (OOP)Einführung in die Objektorientierte Programmierung (OOP)

5.8 Rekursion public int fakultaet(int n)
{
 if (n == 0)
 return 1;
 else
 return n * fakultaet(n - 1);
}

fakultaet(0)
n == 0 → 1

fakultaet(1)
n != 0 → fakultaet(0)

fakultaet(2)
n != 0 → fakultaet(1)

fakultaet(3)
n != 0 → fakultaet(2)

fakultaet(4)
n != 0 → fakultaet(3)

rekursiver
Abstieg

Einführung in die Objektorientierte Programmierung (OOP)Einführung in die Objektorientierte Programmierung (OOP)

5.8 Rekursion public int fakultaet(int n)
{
 if (n == 0)
 return 1;
 else
 return n * fakultaet(n - 1);
}

fakultaet(0)
n == 0 → 1

return 1

fakultaet(1)
n != 0 → fakultaet(0)

return 1*1 = 1

fakultaet(2)
n != 0 → fakultaet(1)

return 2*1 = 2

fakultaet(3)
n != 0 → fakultaet(2) return 3*2 = 6

fakultaet(4)
n != 0 → fakultaet(3) return 4*6 = 24

im "Keller" angekommen, da
Abbruchbedingung n == 0 erfüllt ist.

Einführung in die Objektorientierte Programmierung (OOP)Einführung in die Objektorientierte Programmierung (OOP)

5.8 Rekursion public int fakultaet(int n)
{
 if (n == 0)
 return 1;
 else
 return n * fakultaet(n - 1);
}

fakultaet(0)
n == 0 → 1

return 1

fakultaet(1)
n != 0 → fakultaet(0)

return 1*1 = 1

fakultaet(2)
n != 0 → fakultaet(1)

return 2*1 = 2

fakultaet(3)
n != 0 → fakultaet(2) return 3*2 = 6

fakultaet(4)
n != 0 → fakultaet(3) return 4*6 = 24

rekursiver
Aufstieg

Einführung in die Objektorientierte Programmierung (OOP)Einführung in die Objektorientierte Programmierung (OOP)

5.8 Rekursion public int fakultaet(int n)
{
 if (n == 0)
 return 1;
 else
 return n * fakultaet(n - 1);
}

fakultaet(0)
n == 0 → 1

return 1

fakultaet(1)
n != 0 → fakultaet(0)

return 1*1 = 1

fakultaet(2)
n != 0 → fakultaet(1)

return 2*1 = 2

fakultaet(3)
n != 0 → fakultaet(2) return 3*2 = 6

fakultaet(4)
n != 0 → fakultaet(3) return 4*6 = 24

rekursiver
Aufstieg

Einführung in die Objektorientierte Programmierung (OOP)Einführung in die Objektorientierte Programmierung (OOP)

5.8 Rekursion public int fakultaet(int n)
{
 if (n == 0)
 return 1;
 else
 return n * fakultaet(n - 1);
}

fakultaet(0)
n == 0 → 1

return 1

fakultaet(1)
n != 0 → fakultaet(0)

return 1*1 = 1

fakultaet(2)
n != 0 → fakultaet(1)

return 2*1 = 2

fakultaet(3)
n != 0 → fakultaet(2) return 3*2 = 6

fakultaet(4)
n != 0 → fakultaet(3) return 4*6 = 24

rekursiver
Aufstieg

Einführung in die Objektorientierte Programmierung (OOP)Einführung in die Objektorientierte Programmierung (OOP)

5.8 Rekursion public int fakultaet(int n)
{
 if (n == 0)
 return 1;
 else
 return n * fakultaet(n - 1);
}

fakultaet(0)
n == 0 → 1

return 1

fakultaet(1)
n != 0 → fakultaet(0)

return 1*1 = 1

fakultaet(2)
n != 0 → fakultaet(1)

return 2*1 = 2

fakultaet(3)
n != 0 → fakultaet(2) return 3*2 = 6

fakultaet(4)
n != 0 → fakultaet(3) return 4*6 = 24

rekursiver
Aufstieg

Einführung in die Objektorientierte Programmierung (OOP)Einführung in die Objektorientierte Programmierung (OOP)

5.8 Rekursion: Fibonacci-Zahlen

public static int fib(int n)
{
 if (n == 0)
 return 0;
 if (n == 1)
 return 1;

 return fib(n-1) + fib(n-2);
}

Einführung in die Objektorientierte Programmierung (OOP)Einführung in die Objektorientierte Programmierung (OOP)

5.8 Rekursion: Fibonacci-Zahlen
public static int fib(int n)
{
 if (n == 0)
 return 0;
 if (n == 1)
 return 1;

 return fib(n-1) + fib(n-2);
}

fib(4)

fib(3) fib(2)+

fib(2) fib(1)+ fib(1) + fib(0)

fib(1) + fib(0)

Einführung in die Objektorientierte Programmierung (OOP)Einführung in die Objektorientierte Programmierung (OOP)

5.8 Rekursion: Fibonacci-Zahlen
public static int fib(int n)
{
 if (n == 0)
 return 0;
 if (n == 1)
 return 1;

 return fib(n-1) + fib(n-2);
}

fib(4)

fib(3) fib(2)+

fib(2) fib(1)+ fib(1) + fib(0)

fib(1) + fib(0)

1 0

1 01

Einführung in die Objektorientierte Programmierung (OOP)Einführung in die Objektorientierte Programmierung (OOP)

5.8 Rekursion: Fibonacci-Zahlen
public int fib(int n)
{
 if (n == 0)
 return 0;
 if (n == 1)
 return 1;

 return fib(n-1) + fib(n-2);
}

fib(4)

fib(3) fib(2)+

fib(2) fib(1)+ fib(1) + fib(0)

fib(1) + fib(0)

1 0

1 011

2 1

3

Einführung in die Objektorientierte Programmierung (OOP)Einführung in die Objektorientierte Programmierung (OOP)

5.8 Rekursion: Fibonacci-Zahlen
public int fib(int n)
{
 if (n == 0)
 return 0;
 if (n == 1)
 return 1;

 return fib(n-1) + fib(n-2);
}

fib(5)

fib(4) fib(3)+

5

3 2

Einführung in die Objektorientierte Programmierung (OOP)Einführung in die Objektorientierte Programmierung (OOP)

5.8 Rekursion: Fibonacci-Zahlen

public int fib(int n)
{
 if (n < 2) return n;
 return fib(n-1) + fib(n-2);
}

fib(6)

fib(5) fib(4)+

8

5 3

1 - 1 - 2 - 3 - 5 - 8 - 13 - 21 - 24 - 55 - 89 - 144 - 233 - 377 - ...

fib(3)

fib(2) fib(1)+

fib(1) + fib(0)

fib(4)

fib(3) fib(2)+

fib(2) fib(1)+ fib(1) + fib(0)

fib(1) + fib(0)

fib(5)

Einführung in die Objektorientierte Programmierung (OOP)Einführung in die Objektorientierte Programmierung (OOP)

5.8 Rekursion: Fibonacci-Zahlen

Die rekursive Implementierung
der Methode hat durchaus
Nachteile!

Welche?

fib(3)

fib(2) fib(1)

fib(1) fib(0)

fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)

fib(5)

Einführung in die Objektorientierte Programmierung (OOP)Einführung in die Objektorientierte Programmierung (OOP)

5.8 Rekursion: Fibonacci-Zahlen

fib(4)

fib(3) fib(2)

fib(2) fib(1) fib(1) fib(0)

fib(1) fib(0)

fib(6)

Einführung in die Objektorientierte Programmierung (OOP)Einführung in die Objektorientierte Programmierung (OOP)

5.8 Rekursion: mergeSort()

Wo ist hier die Abbruchbedingung?

Einführung in die Objektorientierte Programmierung (OOP)Einführung in die Objektorientierte Programmierung (OOP)

5.8 Rekursion: mergeSort()

Abbruchbedingung!

Einführung in die Objektorientierte Programmierung (OOP)Einführung in die Objektorientierte Programmierung (OOP)

5.8 Rekursion: mergeSort()

mergeSort([38, 27, 43, 3])
│
├── Teilschritt: Aufteilung in zwei Hälften
│ links: [38, 27]
│ rechts: [43, 3]
│
├── mergeSort([38, 27])
│ │
│ ├── Aufteilung
│ │ links: [38]
│ │ rechts: [27]
│ │
│ ├── mergeSort([38]) → Länge 1 → Abbruch
│ ├── mergeSort([27]) → Länge 1 → Abbruch
│ │
│ └── merge([38, 27]) → Ergebnis: [27, 38]
│
└── mergeSort([43, 3])
 │
 ├── Aufteilung
 │ links: [43]
 │ rechts: [3]
 │
 ├── mergeSort([43]) → Länge 1 → Abbruch
 ├── mergeSort([3]) → Länge 1 → Abbruch
 │
 └── merge([43, 3]) → Ergebnis: [3, 43] Beispiel erzeugt

von ChatGPT

