Einfubrung in die @bjektorientierte Programmierung (0OP)

5. Sortieren und Suchen

5.8 Rekursionen

Einfubrung in die @bjektorientierte Programmierung (0OP)

5.8 Rekursion

public i1nt fakultaet (1nt n)
{
1f (n == 0)
return 1;
else
return n * fakultaet(n - 1);

Einfubrung in die @bjektorientierte Programmierung (0OP)

5.8 Rekursion

public int fakultaet (int n) \

{
1f (n == 0)
return 1;

else
return n * fakultaet(n - 1) ;

Die Methode ruft sich selbst auf = Rekursion

Einfubrung in die @bjektorientierte Programmierung (0OP)

5.8 Rekursion

fakultaet (4)

n !'= 0 - fakultaet (3)

—

e

public int fakultaet (int n)
{

1if (n == 0)
return 1;
else
return n * fakultaet(n - 1);

Einfubrung in die @bjektorientierte Programmierung (0OP)

5.8 Rekursion

fakultaet (4)
n !'= 0 - fakultaet (3)

—

e

fakultaet (3)
n !'= 0 - fakultaet (2)

public int fakultaet (int n)
{

1if (n == 0)
return 1;
else
return n * fakultaet(n - 1);

Einfubrung in die @bjektorientierte Programmierung (0OP)

5.8 Rekursion

fakultaet (4)
n !'= 0 - fakultaet (3)

/

e

fakultaet (3)
n !'= 0 - fakultaet (2)

/—

e

fakultaet (2)
n !'= 0 - fakultaet (1)

rekursiver
Abstieg

public int fakultaet (int n)
{

1if (n == 0)
return 1;
else
return n * fakultaet(n - 1);

Einfubrung in die @bjektorientierte Programmierung (0OP)

5.8 Rekursion

fakultaet (4)
n !'= 0 - fakultaet (3)

—

e

fakultaet (3)
n !'= 0 - fakultaet (2)

/—

e

fakultaet (2)
n !'= 0 - fakultaet (1)

—

-

fakultaet (1)
n !'= 0 - fakultaet (0)

rekursiver
Abstieg

public int fakultaet (int n)
{

1if (n == 0)
return 1;
else
return n * fakultaet(n - 1);

Einfubrung in die @bjektorientierte Programmierung (0OP)

5.8 Rekursion

fakultaet (4)
n !'= 0 - fakultaet (3)

—

e

fakultaet (3)
n !'= 0 - fakultaet (2)

/—

e

fakultaet (2)

n !'= 0 - fakultaet (1)

—

-

fakultaet (1)
n !'= 0 - fakultaet (0)

/_

e

fakultaet (0)
n == 0 - 1

rekursiver
Abstieg

public int fakultaet (int n)
{

1if (n == 0)
return 1;
else
return n * fakultaet(n - 1);

Einfubrung in die @bjektorientierte Programmierung (0OP)

5.8 Rekursion

fakultaet (4)
n !'= 0 - fakultaet (3)

—

e

fakultaet (3)
n !'= 0 - fakultaet (2)

—

e

fakultaet (2)
n !'= 0 - fakultaet (1)

—

-

fakultaet (1)
n !'= 0 - fakultaet (0)

/_

e

fakultaet (0)
n==O—>1

return 1

public int fakultaet (int n)
{

1if (n == 0)
return 1;
else
return n * fakultaet(n - 1);

im "Keller" angekommen, da
Abbruchbedingung n == 0 erfillt ist.

Einfubrung in die @bjektorientierte Programmierung (0OP)

5.8 Rekursion

fakultaet (4)
n !'= 0 - fakultaet (3)

—

e

fakultaet (3)
n !'= 0 - fakultaet (2)

/—

e

fakultaet (2)

n !'= 0 - fakultaet (1)

—

-

fakultaet (1)
n !'= 0 - fakultaet (0)

/_

e

return 1*1 = 1

I rekursiver
Aufstieg

fakultaet (0)
n == 0 - 1

return 1

public int fakultaet (int n)
{

1if (n == 0)
return 1;
else
return n * fakultaet(n - 1);

Einfubrung in die @bjektorientierte Programmierung (0OP)

5.8 Rekursion

fakultaet (4)
n !'= 0 - fakultaet (3)

—

e

fakultaet (3)
n !'= 0 - fakultaet (2)

/—

e

fakultaet (2)
n !'= 0 - fakultaet (1)

—

-

return 2*1 = 2

fakultaet (1)
n !'= 0 - fakultaet (0)

/_

return 1*1 = 1

e

|

fakultaet (0)
n == 0 - 1

return 1

public int fakultaet (int n)
{

1if (n == 0)
return 1;
else
return n * fakultaet(n - 1);

rekursiver
Aufstieg

Einfubrung in die @bjektorientierte Programmierung (0OP)

5.8 Rekursion

fakultaet (4)
n !'= 0 - fakultaet (3)

—

e

fakultaet (3)
n !'= 0 - fakultaet (2)

/—

e

return 3*2 = 06

rekursiver
\Aufstieg

fakultaet (2)
n !'= 0 - fakultaet (1)

—

return 2*1 = 2

-

N

fakultaet (1)

n !'= 0 - fakultaet (0)

/_

return 1*1 = 1

e

|

fakultaet (0)
n == 0 - 1

return 1

public int fakultaet (int n)
{

1if (n == 0)
return 1;
else
return n * fakultaet(n - 1);

Einfubrung in die @bjektorientierte Programmierung (0OP)

5.8 Rekursion

fakultaet (4)
n !'= 0 - fakultaet (3)

—

e

4*o =

rekursiver
Aufstieg

return

fakultaet (3)
n !'= 0 - fakultaet (2)

/—

return 3*2 =

e

\

fakultaet (2)
n !'= 0 - fakultaet (1)

—

return 2*1 =

-

\

fakultaet (1)

n !'= 0 - fakultaet (0)

return 1*1 =

e

B |

fakultaet (0)
n == 0 - 1

return 1

public int fakultaet (int n)

{

1f (n == 0)
return 1;
else

return n * fakultaet(n - 1);

Einfubrung in die @bjektorientierte Programmierung (0OP)

5.8 Rekursion: Fibonacci-Zahlen

public static 1nt fib(int n)
{

1f (n == 0)
return 0;
1f (n == 1)

return 1;

return fib(n-1) + fib(n-2);

Einfubrung in die @bjektorientierte Programmierung (0OP)

5.8 Rekursion: Fibonacci-Zahlen

public static int fib(int n)
{
fib (4) 1f (n == 0)
return O;
if (n == 1)
return 1;
return fib(n-1) + fib(n-2);
fib (+ fib (2) }
fib(2) fib (fib (1) + fib (0)

fib (1) + fi1b (0)

Einfubrung in die @bjektorientierte Programmierung (0OP)

5.8 Rekursion: Fibonacci-Zahlen

public static int fib(int n)
{
fib (4) 1f (n == 0)
return O;
if (n == 1)
return 1;
return fib(n-1) + fib(n-2);
fib (+ fib (2) }
fib(2) fib (fib (1) + fib (0)
1 1 0
fib (1) + fib (0)

Einfubrung in die @bjektorientierte Programmierung (0OP)

5.8 Rekursion: Fibonacci-Zahlen

public 1int fib(int n)
{
fib (4) if (n == 0)
return 0;
3 if (n == 1)
return 1;
return fib(n-1) + fib(n-2);
fib (+ fib (2) }
/ \ / 1\
fib (2) fib (fib (1) + fib (0)
1 1 1 0
fib (1) + fib (0)

Einfubrung in die @bjektorientierte Programmierung (0OP)

5.8 Rekursion: Fibonacci-Zahlen

public 1int fib(int n)
{
fib (5) if (n == 0)
return 0O;
5 1if (n == 1)
return 1;
return fib(n-1) + fib(n-2);
fib (4) + fib (3) }

Einfubrung in die @bjektorientierte Programmierung (0OP)

5.8 Rekursion: Fibonacci-Zahlen

tib(6) public int fib(int n)
g {
1f (n < 2) return n;
return fib(n-1) + fib(n-2);
}
fib (5) + f1ib(4) R—
5 3

1-1-2-3-5-8-13-21-24-55-89-144-233-377 -...

Einfubrung in die @bjektorientierte Programmierung (0OP)

5.8 Rekursion: Fibonacci-Zahlen

£1b (5) Die rekursive Implementierung
der Methode hat durchaus
Nachteilel!
2
Fib (4) Welche?
fib (3) fib (+ fib (2)
fib(2) | + | fib (1) fib (2) fib (1) fib (1) | + [£1b (0)

ANEREVAN

fib(1) | + |fib (0) fib (1) | + [£1b (0)

Einfubrung in die @bjektorientierte Programmierung (0OP)

fib (4)

N

fib (3)

A\

fib (2)

AN

fib (1)

fib (1)

fib (0)

5.8 Rekursion: Fibonacci-Zahlen

/

fib (2)

/ N\

fib (6)

fib (1)

fib (0)

T

fib (3)

7\

fib (5)

fib (2)

fib (1)

AN

fib (1)

f1b (0)

™

fib (4)

N

fib (3)

A\

fib(2)

fib (1)

AN

fib (1)

£fib (0)

fib (2)

/ N\

fib (1)

£fib (0)

Einfﬁhrung in die Obj ubl1’c void mergeSort(int[] zahl)

5.8 Rekursion: mergeSort()

Wo ist hier die Abbruchbedingung?

if (zahlen.length > 1)

{
int mitte = zahlen.length / 2;

// linkes und rechtes Teilarray erzeugen
int[] links = new int[mitte];
int[] rechts = new int[zahlen.length - mitte];

// Elemente aufteilen

for (int i = 0; i < mitte; i++)
links[1] = zahlen[1];

for (int i = mitte; i < zahlen.length; i++)
rechts[1 - mitte] = zahlen[1];

// rekursiv sortieren
mergeSort(links) ;
mergeSort(rechts);

// zusammenfuhren
merge(zahlen, links, rechts);

Einfﬁhrung in die Obj ubl1’c void mergeSort(int[] zahl)

5.8 Rekursion: mergeSort()

Abbruchbedingung!

if (zahlen.length > 1)

{
int mitte = zahlen.length / 2;

// linkes und rechtes Teilarray erzeugen
int[] links = new int[mitte];
int[] rechts = new int[zahlen.length - mitte];

// Elemente aufteilen

for (int i = 0; i < mitte; i++)
links[1] = zahlen[1];

for (int i = mitte; i < zahlen.length; i++)
rechts[1 - mitte] = zahlen[1];

// rekursiv sortieren
mergeSort(links) ;
mergeSort(rechts);

// zusammenfuhren
merge(zahlen, links, rechts);

5.8 Rekursion: mergeSort()

public void mergeSort(int[] zahlen)

i
if (zahlen.length > 1)

{
int mitte = zahlen.length / 2;

// linkes und rechtes Teillarray erzeugen
int[] links = new int[mitte];
int[] rechts = new int[zahlen.length - mitte];
// Elemente aufteilen
for (int i = 0; 1 < mitte; i++)
links[1] = zahlen[i];
for (int i = mitte; i < zahlen.length; i++)
rechts[1 - mitte] = zahlen[i];

// rekursiv sortieren
mergeSort(links) ;
mergeSort(rechts);

// zusammenfuhren
merge(zahlen, links, rechts);

Einfihrung|in die @bjekto lisEiSu RS

Teilschritt: Aufteilung in zwei Halften
links: [38, 27]
rechts: [43, 3]

— mergeSort([38, 27])

— Aufteilung
links: [38]
rechts: [27]

— mergeSort([38]) — Lange 1 = Abbruch
— mergeSort([27]) — Lange 1 = Abbruch

L merge([38, 27]) — Ergebnis: [27, 38]

mergeSort([43, 3])

— Aufteilung
links: [43]
rechts: [3]

— mergeSort([43]) — Lange 1 — Abbruch
— mergeSort([3]) — Lange 1 = Abbruch

L merge([43, 3]) — Ergebnis: [3, 43]

Beispiel erzeugt
von ChatGPT

