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5. Sortieren und Suchen  

5.8 Rekursionen 
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fakultaet(0) 
n == 0 → 1

return 1
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im "Keller" angekommen, da 
Abbruchbedingung n == 0 erfüllt ist.
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5.8 Rekursion: Fibonacci-Zahlen

public static int fib(int n) 
{ 
    if (n == 0) 
        return 0; 
    if (n == 1) 
        return 1; 

    return fib(n-1) + fib(n-2); 
}
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5.8 Rekursion: Fibonacci-Zahlen
public int fib(int n) 
{ 
    if (n == 0) 
        return 0; 
    if (n == 1) 
        return 1; 

    return fib(n-1) + fib(n-2); 
}
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5.8 Rekursion: Fibonacci-Zahlen

public int fib(int n) 
{ 
    if (n < 2) return n; 
    return fib(n-1) + fib(n-2); 
}
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1 - 1 - 2 - 3 - 5 - 8 - 13 - 21 - 24 - 55 - 89 - 144 - 233 - 377 - ...
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5.8 Rekursion: Fibonacci-Zahlen

Die rekursive Implementierung 
der Methode hat durchaus 
Nachteile! 

Welche?
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5.8 Rekursion: Fibonacci-Zahlen
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5.8 Rekursion: mergeSort()

Wo ist hier die Abbruchbedingung?
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5.8 Rekursion: mergeSort()

Abbruchbedingung!
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5.8 Rekursion: mergeSort()

mergeSort([38, 27, 43, 3]) 
│ 
├── Teilschritt: Aufteilung in zwei Hälften 
│       links:  [38, 27] 
│       rechts: [43, 3] 
│ 
├── mergeSort([38, 27]) 
│   │ 
│   ├── Aufteilung 
│   │       links:  [38] 
│   │       rechts: [27] 
│   │ 
│   ├── mergeSort([38])   → Länge 1 → Abbruch 
│   ├── mergeSort([27])   → Länge 1 → Abbruch 
│   │ 
│   └── merge([38, 27])   → Ergebnis: [27, 38] 
│ 
└── mergeSort([43, 3]) 
    │ 
    ├── Aufteilung 
    │       links:  [43] 
    │       rechts: [3] 
    │ 
    ├── mergeSort([43])   → Länge 1 → Abbruch 
    ├── mergeSort([3])    → Länge 1 → Abbruch 
    │ 
    └── merge([43, 3])    → Ergebnis: [3, 43] Beispiel erzeugt 

von ChatGPT


