V12 Titration einer schwachen Säure

Zielsetzung:

Schwache Säuren, bei denen das Protolysegleichgewicht weit auf der rechten Seite liegt, lassen sich ebenfalls mit einer Lauge titrieren. Allerdings verläuft die Titration hier anderes, da stets nur ein geringer Teil der Säure-Moleküle dissoziiert ist. In diesem Versuch wollen wir die Titrationskurve der Reaktion einer schwachen Säure mit NaOH erstellen.

Durchführung des Versuchs

Titrieren Sie 100 ml **Essigsäure** der Konzentration c(CH₃COOH) = 1 mol/l, der einige Tropfen Universalindikator zugegeben wurden, mit Natronlauge der Konzentration c(NaOH) = 1 mol/l. Lassen Sie die Natronlauge zunächst in Portionen von je 10 ml zufließen und notieren Sie anschließend das Volumen der verbrauchten Natronlauge sowie den pH-Wert (pH-Messgerät).

Wenn Sie sich dem Äquivalenzpunkt nähern, also nach ca. 90 ml Natronlauge (der ÄP sollte nach 100 ml Natronlauge erreicht sein), verkleinern Sie die Portionsgröße der Natronlauge auf 1 ml. Notieren Sie weiterhin V(NaOH) und den pH-Wert der Lösung.

Wenn Sie 110 ml Natronlauge zugegeben haben, erhöhen Sie die Portionsgröße wieder auf 10 ml. Wenn Sie insgesamt 200 ml NaOH dazugegeben haben, beenden Sie den Versuch.

Stellen Sie die Wertpaare V(NaOH) / pH-Wert anschließend durch eine Kurve dar.

Protokoll:

V(NaOH)	pH-Wert	V(NaOH)	pH-Wert
0		101	
10		102	
20		103	
30		104	
40		105	
50		106	
60		107	
70		108	
80		109	
90		110	
91		120	
92		130	
93		140	
94		150	
95		160	
96		170	
97		180	
98		190	
99		200	
100			

Entsorgung:

Die Lösung im Becherglas kann bedenkenlos in den Ausguss gegeben werden, wenn mit viel Wasser nachgespült wird.

Sicherheit:

Säuren und Laugen dürfen grundsätzlich nicht in die Augen gelangen, auf jeden Fall **Schutzbrille**

aufsetzen und Augenwaschflasche mit frischem Leitungswasser bereit halten.

Bevor Sie die Bürette mit Natronlauge befüllen, stellen Sie diese bitte auf den Fußboden und verwenden Sie einen Trichter!

Alternativ können Sie die NaOH aus einer 10ml- bzw. 1ml-Pipette zugeben, das ist genauer und sicherer!

V13 Titration einer schwachen zweiprotonigen Säure

Zielsetzung:

Zweiprotonige Säuren lassen sich ebenfalls mit einer Lauge titrieren. In diesem Versuch wollen wir die Titrationskurve der Reaktion einer schwachen zweiprotonigen Säure mit NaOH erstellen.

Durchführung des Versuchs

Titrieren Sie 50 ml **Oxalsäure** der Konzentration c(HOOC-COOH) = 0,1 mol/l, der einige Tropfen Universalindikator zugegeben wurden, mit Natronlauge der Konzentration c(NaOH) = 0,1 mol/l. Lassen Sie die Natronlauge in Portionen von je 5 ml zufließen und notieren Sie anschließend das Volumen der verbrauchten Natronlauge sowie den pH-Wert (pH-Messgerät).

Stellen Sie die Wertpaare V(NaOH) / pH-Wert anschließend durch eine Kurve dar.

Lassen Sie bei diesem Versuch besondere Sorgfalt walten! Die Titrationskurve sollte anderes aussehen als bei einer einprotonigen Säure.

Besonders gut aufpassen sollten Sie, wenn Sie zwischen 40 und 60 ml NaOH zugegeben haben (dann ist ungefähr die Hälfte der Säure neutralisiert), und wenn Sie zwischen 90 und 110 ml NaOH zugegeben haben (dann sollte die Säure vollständig neutralisiert sein). Vielleicht können Sie hier die Portionsgröße sogar noch stärker verringern (auf 1 ml), um möglichst genau Ergebnisse zu erzielen. Sollten Sie so vorgehen, verwenden Sie bitte das Protokoll auf der Seite 3.

Protokoll:

V(NaOH)	pH-Wert	V(NaOH)	pH-Wert
0		100	
5		105	
10		110	
15		115	
20		120	
25		125	
30		130	
35		135	
40		140	
45		145	
50		150	
55		155	
60		160	
65		165	
70		170	
75		175	
80		180	
85		185	
90		190	
95		195	

Entsorgung und Sicherheit:

Siehe Seite 1

V13 Titration einer schwachen zweiprotonigen Säure

V(NaOH)	pH-Wert	V(NaOH)	pH-Wert	V(NaOH)	pH-Wert
0		60		130	
5		65		140	
10		70		150	
15		75		175	
20		80		200	
25		85			
30		90			
35		92			
40		94			
42		96			
44		98			
46		99			
48		100			
49		101			
50		102			
51		104			
52		106			
54		108			
56		110			
58		120			